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Peirce, Clifford, and Dirac

R. G. Beil1,2

Received

There is a clear line of progression from the “logic of relations” of Charles Sanders Peirce
through the algebras of William Kingdon Clifford. Further, it has been shown how one
can obtain the nonrelativistic quantum theory of spin one-half particles from Peirce
logic. Continuing the hypothetical history, it is demonstrated here that the relativistic
Dirac theory can also be related to Peirce logic. The most natural way to accomplish
this is to represent the Dirac wave functions themselves as Clifford numbers rather than
as spinors. The wave functions can thus appear as 4 × 4 matrices. All quantities in this
quantum theory can actually be expressed in terms of the Clifford basis, independent of
a specific matrix representation.
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1. INTRODUCTION

In a recent paper (Beil and Ketner, 2003) the personal and professional asso-
ciation of the American physicist and philosopher Charles Sanders Peirce (1839–
1914) and the British mathematician William Kingdon Clifford (1845–1874) was
recounted. A relationship between the logical system which Peirce called his “logic
of relations,” on the one hand, and the well-known Clifford algebras, in particular
C(3, 0), on the other, was also established. The Peirce logic was shown to translate
into a linear associative algebra which is related to quaternions. The elements of
the Peirce logic are Clifford numbers and are simple linear combinations of the
quaternion basis.

A correspondence with nonrelativistic quantum mechanics was also demon-
strated. This follows from the fact that the Pauli matrices are a representation of the
basis of the C(3, 0) algebra. The quantum correspondence is made even closer by
the representation of the wave functions themselves as matrices instead of spinors.
That is, instead of wave functions as spinors which are represented as column or
row matrices, the wave functions are taken to be, say, 2 × 2 matrices (in the Pauli

1 Institute for Studies in Pragmaticism, Texas Tech University, Lubbock, Texas.
2 To whom correspondence should be addressed at 313 S. Washington, Marshall, Texas 75670; e-mail:

rbeil@etbu.edu.

1301

0020-7748/04/0500-1301/0 C© 2004 Springer Science+Business Media, Inc.



1302 Beil

basis) and just Clifford numbers themselves. Thus, all quantities in this quantum
theory are Clifford elements and all quantum equations can be expressed in terms
of the Clifford basis, independent of any specific matrix representation.

The use of a Clifford number interpretation of a relativistic wave function was
actually discussed very early in the history of the Dirac theory (Eddington, 1928;
Proca, 1930; Sauter, 1930; Sommerfeld, 1939). An outline of this development is
given by Snygg (1997). As in the Pauli theory, the wave functions are represented
by square matrices, however, in the Dirac case the matrices are 4 × 4. The Clifford
algebra is C(1, 3) (Göckeler and Schücker, 1987).

This unified approach was recalled briefly by Ross (1986), but not explored
in detail.

So the purpose here is to outline, in similar fashion as in Beil and Ketner
(2003), how the Peirce logic relates to Dirac wave functions as elements of a
Clifford algebra. This gives a quantum theory where all quantities are expressed
as Clifford multivectors. Some alternative Dirac solutions appear which may lead
to new physical interpretations.

2. PEIRCE AND CLIFFORD

Peirce’s logic of relations might best be explained by an example he him-
self gave (Peirce, 1933): Take two mutually exclusive classes of individuals, say,
teachers, u1, and pupils, u2. In general, there could be more than two classes, with
individuals labeled ui . These individuals are called “absolute terms” by Peirce,
which we will shorten to “absolutes.” Absolutes are one type of element in the
logic.

The absolutes can be operated on linearly by a second type of element called
“dual relatives” by Peirce. A better name for present purposes is “relative operators”
or just “operators.” In Peirce’s scheme, for two classes of absolute, there are four
operators, u11, u12, u21, u22, which act on the absolutes as follows:

u11u1 = u1 u12u2 = u1

u21u1 = u2 u22u2 = u2 (1a)

A verbal statement of, say, u12u2 = u1, would be “u12 acting on a pupil
produces a teacher.” Note that the first and last of the equations in (1a) have the
form of eigenvalue equations.

In addition, there are four other operator results which are included:

u11u2 = 0 u12u1 = 0

u21u2 = 0 u22u1 = 0 (1b)

A verbal statement of, say, u12u1 = 0 would be “u12 acting on a teacher produces
nothing.”
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Table I. Multiplication Table for Relative Operators

u11 u12 u21 u22

u11 u11 u12 0 0
u12 0 0 u11 u12

u21 u21 u22 0 0
u22 0 0 u21 u22

The general rule for the action of operators on absolutes is

ui j uk = δ jkui (2)

The operators can also act on each other according to the multiplication rule

ui j ukl = δ jkuil (3)

For two classes of absolutes the multiplication table is given in Table I. The
operator in the left column acts from the left on the operator in the top row and
produces the result in the corresponding box. A simple matrix representation of
these operators has been given by Lenzen (1975):

u11 =
(

1 0

0 0

)
, u12 =

(
0 1

0 0

)
, u21 =

(
0 0

1 0

)
, u22 =

(
0 0

0 1

)
(4)

The four operators can obviously be represented by a basis for 2 × 2 matri-
ces. This means that, with complex coefficients, linear combinations of the four
operators can be constructed which are the quaternion basis:

I = u11 + u22, i = −iu12 − iu21, j = u21 − u12, k = −iu11 + iu22 (5)

So the ui j ’s are numbers in the quaternion system and are also Clifford num-
bers. It will be shown presently that this produces a direct relation between the
operators of Peirce logic and the Pauli matrices of quantum theory. The absolutes
ui can also be placed in this algebraic scheme.

Peirce himself gave an expression for absolutes as a sum of operators:

ui =
∑

j

ui j (6)

For the case of two classes of individuals and the matrix representation (4),

u1 = u11 + u12 =
(

1 1

0 0

)

u2 = u21 + u22 =
(

0 0

1 1

)
(7)
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The prescription for constructing operators from absolutes uses the Hermitian
conjugates:

u∗
1 =

(
1 0

1 0

)
u∗

2 =
(

0 1

0 1

)
(8)

so that the operators are

u11 = 1

2
u1u∗

1 u12 = 1

2
u1u∗

2

u21 = 1

2
u2u∗

1 u22 = 1

2
u2u∗

2 (9)

It was shown in Beil and Ketner (2003) how the algebra derived from this
logic of relations corresponds to nonrelativistic quantum theory. The teacher–pupil
classification becomes spinup–spindown. Note that all quantities in the theory, in-
cluding the absolutes and operators of the logic, on the one hand, and the elements
of the quantum theory (both wave functions and operators) on the other, can cor-
respond to quantities in the Clifford algebra.

The specific linear transformation from elements of the Peirce logic to the
usual representation of the Pauli matrices is

I = u11 + u22 =
(

1 0

0 1

)
σ1 = u12 + u21 =

(
0 1

1 0

)

σ2 = −iu12 + iu21 =
(

0 −i

i 0

)
σ3 = u11 − u22 =

(
1 0

0 −1

)
(10)

This shows explicitly how a quantum theory can be constructed from the
classical Peirce logic. Peirce gave (in 1870) a version of the transformation (5)
from the basis elements ui j of this logic to a general quaternion basis (see Peirce,
1933, p. 81). This is a C(3, 0) Clifford algebra. Of course, this was over 50 years
before the introduction of quantum theory. The Peirce/Clifford scaffolding stood
neglected for that half century. When it was finally used almost no one remembered
the names of the builders.

Peirce certainly recognized that his operators were related to noncommuting
algebras such as quaternions. However, he never applied this back to his logic and,
as far as the written record divulges, never actually developed a “quantum logic.”

The discussion so far relates to nonrelativistic quantum theory. The same sort
of development can give a relativistic theory.

In order to do this one can enlarge the logic to include another pair of classes.
If this pair is positive energy–negative energy, this can lead to the Dirac particle
theory, as will now be shown.

The logic in the case of positive energy–negative energy classes can be rep-
resented by a scheme which closely duplicates the above system with u1 as spinup
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and u2 as spindown. One needs only to take, say, t1, as positive energy and t2 as
negative energy.

There are two independent operator matrices, ui j and tab. A standard way to
combine the t and u spaces is to use a tensor product t ⊗ u. The basis of this space
can be represented in 4 × 4 matrix form:

t11 ⊗ u11 =

 u11 (0)

(0) (0)


 t11 ⊗ u12 =


 u12 (0)

(0) (0)


 t12 ⊗ u11 =


 (0) u11

(0) (0)


 t12 ⊗ u12 =


 (0) u12

(0) (0)




t11 ⊗ u21 =

 u21 (0)

(0) (0)


 t11 ⊗ u22 =


 u22 (0)

(0) (0)


 t12 ⊗ u21 =


 (0) u21

(0) (0)


 t12 ⊗ u22 =


 (0) u22

(0) (0)




t21 ⊗ u11 =

 (0) (0)

u11 (0)


 t21 ⊗ u12 =


 (0) (0)

u12 (0)


 t22 ⊗ u11 =


 (0) (0)

(0) u11


 t22 ⊗ u12 =


 (0) (0)

(0) u12




t21 ⊗ u21 =

 (0) (0)

u21 (0)


 t21 ⊗ u22 =


 (0) (0)

u22 (0)


 t22 ⊗ u21 =


 (0) (0)

(0) u21


 t22 ⊗ u22 =


 (0) (0)

(0) u22




(0) =
(

0 0
0 0

)
(11)

The u matrices are taken from (4).
The index system can be changed to a 4 × 4 form by using gAB (A, B =

1, 2, 3, 4). The index A corresponds to the number of the row of the array in (11),
the index B corresponds to the number of the column of the array. This gives a
multiplication rule

gAB gC D = δBC gAD (12a)

which is equivalent to the rule

(tab ⊗ ui j )(tcd ⊗ ukl) = (δbctad ⊗ δ jkuil) (12b)

The rules (12a) and (12b) apply to the multiplication of 4 × 4 matrices.
The construction of the Peirce absolutes and the consequent derivation of

the operators can now proceed along the lines of (7), (8), and (9). This will be
postponed until after the definition of the Dirac states so the Dirac results will be
available.

Just as linear combinations of the u matrices using complex coefficients gave
the Pauli matrices (10), so also can the Dirac vectors be obtained in the C(1, 3)
Clifford algebra from the 4 × 4 matrix basis above. The algebraic expressions for
a common representation are

γ 0 = g11 + g22 − g33 − g44

γ 1 = g14 + g23 − g32 − g41
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γ 2 = −i(g14 − g23 − g32 + g41)

γ 3 = g13 − g24 − g31 + g42 (13)

and the matrix representations are the standard set which can be obtained imme-
diately from (13).

These numbers satisfy the Clifford algebra rules

γ µγ ν + γ νγ µ = 2ηµν (14)

where η is diag(1, −1, −1, −1), a Minkowski metric.
This clearly shows how the classical basis gAB leads to the quantum basis γ µ.

In a sense, the classical matrices (and the Peirce algebra) are more fundamental
since they are simpler. It must be pointed out, however, that the quantum operators
cannot be considered to be a special case of the classical operators.

3. DIRAC

A vector with contravariant components pµ = (p0; p1, p2, p3) and covari-
ant components pµ = (p0; −p1, −p2, −p3), such as the momentum vector, is
expressed in the Dirac basis as

p = p0γ
0 − piγ

i = pµγ µ (i = 1, 2, 3; µ = 0, 1, 2, 3) (15)

The usual Einstein sums over up–down indices are implied. Note that these indices
refer to the Dirac basis and not the matrix indices used above.

The Dirac equation is

i h∂ψ = mcψ (16)

where ∂ is the gradient

∂ = ∂

∂xµ
γ µ (17)

Usually, ψ is called a spinor (or bispinor) and is represented by some 4-
element column matrix. But these spinors, as mentioned in the Introduction, are
not Clifford numbers. The choice is made instead to use solutions ψ which are
Clifford numbers and have 4 × 4 matrix representation. Note that this approach
diverges from that of Marchuk (1998) who considers states with various numbers
of columns with no special consideration of solutions which are actually Clifford
numbers. The states here are also different from Rarita–Schwinger states since
there are no separate vector indices. The total algebra is only a Clifford algebra
while Rarita–Schwinger involves the tensor product of a Clifford algebra and a
4-vector space with certain subsidiary conditions.



Peirce, Clifford, and Dirac 1307

The assumption then, is that the form of the solution is

ψ+ = u exp

(
− i

h
pµxµ

)
(18)

where u is some Clifford number with constant elements. It follows that

i h∂ψ+ = pψ+ = pu exp

(
− i

h
pµxµ

)
(19)

which leads to the condition

pu = mcu (20)

This is an eigenvalue equation. Since

pp = m2c2I (21a)

then a u which satisfies (20) is

u = mcI + p (21b)

This is a Clifford number, actually a scalar plus a vector. The complete set of
a multivector basis is given in several texts, for example, Snygg (1997).

A matrix representation for u is

u =




mc + p0 0 −p3 −p−
0 mc + p0 −p+ p3

p3 p− mc − p0 0

p+ −p3 0 mc − p0


 (22)

where p± = p1 ± p2. Other representations could be used.
If the Peirce projection operators g11, g22, g33, g44 are applied on u on the

right, then four 4 × 4 matrices with only one nonzero column are obtained. These
are just the four columns of (22). They are left ideals and correspond to the usual
Dirac spinors, except that the spinors are 1 × 4 column matrices. The Peirce op-
erators are identical with the standard projection operators

g11 = 1

4
(I + γ 0)(I + s) g22 = 1

4
(I + γ 0)(I − s)

g33 = 1

4
(I − γ 0)(I + s) g44 = 1

4
(I − γ 0)(I − s) (23)

s = iγ 1γ 2

The bivector s is also used as a spin operator and its eigenvalue determines whether
the particle is in spinup ↑ or spindown ↓ state. However, the complete matrix
solution (22), although it is an eigenmatrix for p (see (20)) is not an eigenstate for
s. This can easily be verified by explicitly computing su. A remedy for the problem
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(Grandy, 1991; Messiah, 1966) is to assume the particle momentum is only in the
3-direction. Thus, the solution matrix u becomes

u =




mc + p0 0 −p3 0

0 mc + p0 0 p3

p3 0 mc − p0 0

0 −p3 0 mc − p0


 (24)

The four matrix solutions

u1 = ug11 u2= ug22 u3 = ug33 u4 = ug44 (25a)

are eigenstates for s and can be partially distinguished by their eigenvalues for
spin.

su1 = +u1 su2 = −u2 su3 = +u3 su4 = −u4 (25b)

It is apparent that the state u1 has the same eigenvalues as the state u3. Simi-
larly, u2 and u4 have the same eigenvalues. This has been noticed by several authors
(Grandy, 1991; Messiah, 1966; Weinberg, 1995) but no satisfactory resolution has
been suggested. Usually, the extra states are just ignored.

Another approach is to introduce a second set of column matrix solutions.
These can be obtained by taking plane waves of the form

ψ− = v exp

(
i

h
pµxµ

)
(26)

where v is a Clifford number with constant elements.
In the same way as for (19)

i h∂ψ− = −pψ− = −pv exp

(
i

h
pµxµ

)
= mcψ− (27)

Since

pv = −mcv (28)

there are solutions with

v = mcI − p (29)

Like u, the v are the sum of a Clifford scalar and vector.
A matrix representation of v which corresponds to (24) is

v =




mc − p0 0 p3 0

0 mc − p0 0 −p3

−p3 0 mc + p0 0

0 p3 0 mc + p0


 (30)
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Again, the momentum is assumed to be only in the 3-direction.
The same Peirce projection operators from (23) are applied on v on the right to

produce similar 4 × 4 matrices with one nonzero column. One has, then, eight so-
lutions represented by these Dirac spinors. They include (25a) and v1 = vg11, v2 =
vg22, v3 = vg33, v4 = vg44.

A novel assumption is now introduced. This is to choose as Dirac wave
functions the matrix states which consist of two nonzero columns. This is to be
contrasted with the ordinary spinor solutions which are comparable to matrices
which have one nonzero column or the full matrix solutions which have four
nonzero columns.

The solutions are

u+ =




mc + p0 0 −p3 0

0 0 0 0

p3 0 mc − p0 0

0 0 0 0


 (31a)

u− =




0 0 0 0

0 mc + p0 0 p3

0 0 0 0

0 −p3 0 mc − p0


 (31b)

v+ =




mc − p0 0 p3 0

0 0 0 0

−p3 0 mc + p0 0

0 0 0 0


 (31c)

v− =




0 0 0 0

0 mc − p0 0 −p3

0 0 0 0

0 p3 0 mc + p0


 (31d)

These four solutions are suggested by the Peirce logic, as will be seen. There are
several favorable properties of these solutions.

First, they are easily expressed in terms of the spinor solutions:

u+ = u1 + u3

u− = u2 + u4

v+ = v1 + v3

v− = v2 + v4 (32)
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Second, they are simply related to the full matrix solutions:

u = u+ + u−

v = v+ + v− (33)

or also

2u+ = u(I + s)

2u− = u(I − s)

2v+ = v(I + s)

2v− = v(I − s) (34)

Third, they are a complete orthogonal set, as is easily verified. The normal-
ization will be discussed later.

Fourth, they are eigenfunctions of both the momentum and spin operators

su+ = +u+

su− = −u−

sv+ = +v+

sv− = −v− (35)

pu+ = mcu+

pu− = mcu−

pv+ = −mcv+

pv− = −mcv− (36)

Also, u and v are, themselves, proportional to the projection operators for positive
and negative energy solutions, as can be inferred by the orthogonality results.

Fifth, a complete set of commuting operators can be derived from the four
two-column states. To demonstrate this one can begin with the assumption that if
ψ is a Dirac solution then it can be represented as a matrix state which corresponds
to a ket state |ψ〉. The Hermitian conjugate ψ∗ of ψ is defined as a matrix with
columns transposed into rows and the complex conjugate taken of each element.
For example, for (22),

u∗ =




mc + p0 0 p3 p−
0 mc + p0 p+ −p3

−p3 −p− mc − p0 0

−p+ p3 0 mc − p0


 (37)



Peirce, Clifford, and Dirac 1311

The actual bra state 〈ψ | is the matrix ψ# = ψ∗γ 0. This is usually called the
adjoint. The matrix representation is

u# = u∗γ 0 =




mc + p0 0 −p3 −p−
0 mc + p0 −p+ p3

−p3 −p− p0 − mc 0

−p+ p3 0 p0 − mc


 (38)

An alternate way of computing the adjoint for the full solution matrices u or v
is u# = γ 0u or v# = γ 0v as can easily be verified. The reader should be cautioned
that ψ# = γ 0ψ does not always hold (an example of this is u+ when p+ or p−
is nonzero). However, the alternate adjoint computation will hold for all solutions
subsequently used.

The general form of the matrix of product elements is 〈ψ# | ψ〉. This is, for
example

u#u = γ 0uu = 2mcγ 0u = 2mcu# (39)

This product of matrices corresponds to the matrix of products. Each element
of the matrix is an expectation value in the traditional sense.

Also, operators in this matrix scheme take the general form |ψ〉〈ψ#|. For
example

uu# = uγ 0u = 2p0u (40)

So one can write the operators also as matrices. These matrices are proportional
to the solution matrices themselves. For the canonical solutions (31),

u+u#
+ = 2p0u+

u−u#
− = 2p0u−

v+v#
+ = 2p0v+

v−v#
− = 2p0v− (41)

So the sixth favorable property of the solutions (31) is that the four matrices
form a set of orthogonal operators. From these operators one can construct a
complete set of commuting operators (the fifth property already mentioned):

u+ + u− + v+ + v− = 2mcI

u+ + u− − v+ − v− = 2p

u+ − u− + v+ − v− = 2mcs

u+ − u− − v+ + v− = 2sp = 2h (42)
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These are, in order, Clifford scalar, vector, bivector, and trivector. The trivector h
is often labeled as the helicity . It has eigenvalues,

hu+ = mcu+

hu− = −mcu−

hv+ = −mcv+

hv− = mcv− (43)

This completes the list of eigenvalues from (35) and (36), except for a dis-
cussion of the scalar operator.

At this juncture one might recall that no mention has been made yet of the
Hamiltonian. The usual identification is with the operator

H0 = c(uγ 0 − p0I) (44a)

This does satisfy H0u = p0u and H0v = −p0v, however, it has several problems.
It does not commute with p. It is a Clifford scalar plus vector plus bivector and thus
does not have a simple Clifford identification. Also, there are lingering interpre-
tation difficulties of the commutators of this H0 with physical quantities such as
position and angular momentum. Finally, this Hamiltonian leads to the confusing
topic of Zitterbewegung (Grandy, 1991).

All of this is solved by the Ansatz

H0 = i h
∂

∂x0
(44b)

This satisfies

H0ψ+ = p0ψ+

H0ψ− = −p0ψ− (45)

and this gives a clear distinction of positive and negative energy states. This Hamil-
tonian is a Clifford scalar and commutes with each of the operators in the complete
set. Thus, it fits into the scheme of (42) as a physically significant scalar operator.
It also acts appropriately on the position vector r = rµγ µ:

[H0, r]φ = [H0r − rH0]φ = i h

[
∂

∂x0
(rφ) − r

∂

∂x0
φ

]
= i h

∂r
∂x0

φ (46)

Since this holds for any general wave function φ,

[H0, r] = i h
∂r
∂x0

(47)

which is a desirable result.
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The argument can now be brought full circle. That is, the Dirac solutions
(31) can be directly related to the Peirce logic of the two pairs of the absolutes as
outlined by (11).

The four two-column solutions are transformed to the particle rest frame
where p3 = 0 and p0 = mc. With suitable normalization this gives

u+ =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 u− =




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




v+ =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


 v− =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 (48)

This corresponds to the pairs of matrices (u is spin, t is energy):
For u+ (spin up, positive energy),

u = u11 =
(

1 0

0 0

)
t = t11 =

(
1 0

0 0

)
(49a)

For u− (spin down, positive energy),

u = u22 =
(

0 0

0 1

)
t = t11 =

(
1 0

0 0

)
(49b)

For v+ (spin up, negative energy),

u = u11 =
(

1 0

0 0

)
t = t22 =

(
0 0
0 1

)
(49c)

For v− (spin down, negative energy),

u = u22 =
(

0 0

0 1

)
t = t22 =

(
0 0

0 1

)
(49d)

These are examples of elements of the tensor products (11). The γ matrices and
consequently the entire Dirac theory can be expressed in terms of the t ⊗ u tensor
products.

Finally, the Peirce absolutes for this scheme are easily identified, recalling
(6). The absolute for spinup is u+ + v+. The absolute for spindown is u− + v−.
The absolute for positive energy is just u (see (33)) and the absolute for negative
energy is just v.
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Proceeding in the other direction, one could start from the rest frame solutions
and arrive at the solutions (31) by means of a Lorentz transformation. Of course,
Einstein was born in 1879 and this option was not suspected by either Peirce or
Clifford.

4. DISCUSSION

In a previous paper it was indicated how Peirce’s logic of relations could
proceed to the C(3, 0) Clifford algebra and further to the nonrelativistic quantum
theory represented by the Pauli matrices. The Peirce logic containing two classes
of individuals corresponds to the case of two spin states of the particle.

Here, it has been shown how a Peirce logic with two sets of classes of two
individuals can correspond to the C(1, 3) Clifford algebra and consequently to
the relativistic quantum theory of Dirac. The two sets are spin, with classes up
and down, and energy, with classes positive and negative. The combination of the
spaces representing the two sets is accomplished by a tensor product and leads to a
4 × 4 representation. This representation is a linear transformation of the common
Dirac formalism. The Dirac spinors relate directly to 4 × 4 matrices with one
nonzero column. It was found that a representation with two nonzero columns has
several advantages.

This comparison has historical significance in revealing that an idea of Peirce
from the 1870s reappears in a quantum context with Dirac in the 1920s. The
common language is the algebra of Clifford. There is, however, no known direct
lineage. It is clear, however, that there is a classical correspondence to quantum
theory. For example, operators in the Peirce logic are exactly the quantum projec-
tion operators. Also, the rest frame quantum solutions (48) are exactly the Peirce
operators (23). Of course, Peirce himself never made the quantum leap and never
used the noncommuting operators in his logic.

Since a systematic procedure has been developed to derive new Dirac solu-
tions, it is reasonable to ask if there is any physical significance to be associated
with these solutions. Some tentative ideas have emerged and will be the subject of
future investigation.
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